Abstract Submitted for the DAMOP10 Meeting of The American Physical Society

Photoionization of Ce^{3+}@C_{82}^{1} ZHIFAN CHEN, ALFRED Z. MSEZANE, Clark Atlanta University — Photoionization cross section for the $Ce^{3+}@C_{82}$ endohedral fullerene in the energy region 100-150 eV has been studied using our open-shell random phase approximation with exchange method and the C_{82} model potential. Electron affinity (EA) of the C_{82} has been calculated using the density functional theory. The C_{82} fullerene was described by an attractive short range spherical well with potential V(r), given by V(r) =- V₀ for $r_i < r < r_0$, otherwise V(r) = 0, V_0 was obtained by solving the resultant transcendental equation using the calculated EA value. The wave functions of the Ce^{3+} confined inside the C_{82} have been calculated by solving the Schrödinger equation with both regular and irregular solutions and the continuous boundary conditions of the wave functions and their logarithmic derivatives at r_i and r_0 . Our calculation included 32 ionization channels from 5s, 5p and 4f subshells and 14 channels from the $4d^{10}$ 4f $+h\nu \rightarrow$ $4d^94f^2$ photoexcitation. Finally the RPAE equation was solved to obtain the partial cross sections with a total of 16 2 D states, 16 2 G states and 14 2 F states. The photoionization of $Ce^{3+}@C_{82}$ shows both the resonance and suppression effect and demonstrates a more stronger resonance peak at 106 eV.

¹Supported by AFOSR and DOE.

Zhifan Chen Clark Atlanta University

Date submitted: 20 Jan 2010

Electronic form version 1.4