Structures of ~ 100 nm Size Produced by Atom Lithography with Metastable He1 JASON REEVES, CHRISTOPHER CORDER, XIAOXU LU, CLAIRE ALLRED2, HAROLD METCALF, Stony Brook University, Stony Brook, NY 11794-3800 — We have used neutral atom lithography with metastable $^2S^1$ He (He*) to produce structures of size ~ 100 nm. A beam of He* from our source is collimated by the bichromatic force3 and then by optical molasses. Atoms cross a standing wave of $\lambda = 389$ nm light tuned ~ 80 MHz below the $^2S^1 \rightarrow ^3P^2$ transition and are focussed into lines striking a self assembled monolayer (SAM) of nonanethiol coated over a gold film on a single crystal Si wafer. The 20 eV internal energy of He* destroys the SAM molecules ultimately leaving a pattern of SAM on the gold. Subsequent etching of the unprotected region of the gold results in these features4,5. The lines are separated by 194.5 nm and they occupy about 60% of their spacing. AFM measurements of our first samples show their width to be ~ 120 nm and their depth to be ~ 10 nm.

1Supported by ONR and Dept. of Education.
2Presently at Columbia Univ., 1027 Pupin Hall, New York, NY 10027
4C. Allred et al., submitted to J. Appl. Phys.