Abstract Submitted for the DAMOP10 Meeting of The American Physical Society

Structures of ~ 100 nm Size Produced by Atom Lithography with Metastable He¹ JASON REEVES, CHRISTOPHER CORDER, XIAOXU LU, CLAIRE ALLRED², HAROLD METCALF, Stony Brook University, Stony Brook, NY 11794-3800 — We have used neutral atom lithography with metastable 2³S He (He^{*}) to produce structures of size ~ 100 nm. A beam of He^{*} from our source is collimated by the bichromatic force³ and then by optical molasses. Atoms cross a standing wave of $\lambda = 389$ nm light tuned ~80 MHz below the 2³S₁ \rightarrow 3³P₂ transition and are focussed into lines striking a self assembled monolayer (SAM) of nonanethiol coated over a gold film on a single crystal Si wafer. The 20 eV internal energy of He^{*} destroys the SAM molecules ultimately leaving a pattern of SAM on the gold. Subsequent etching of the unprotected region of the gold results in these features^{4,5}. The lines are separated by 194.5 nm and they occupy about 60% of their spacing. AFM measurements of our first samples show their width to be ~ 120 nm and their depth to be ~ 10 nm.

¹Supported by ONR and Dept. of Education.

²Presently at Columbia Univ., 1027 Pupin Hall, New York, NY 10027

³M. Partlow et al., Phys. Rev. Lett. **93**, 213004 (2004)

⁴C. Allred et al., submitted to J. Appl. Phys.

⁵C. Allred, Ph.D. Thesis, Stony Brook, NY (2009) - unpublished.

Harold Metcalf Stony Brook University

Date submitted: 21 Jan 2010

Electronic form version 1.4