Photoionization of potassium-like transition metal ions: Ti$^{3+}$ to Fe$^{7+}$

A.M. SOSSAH, H.-L. ZHOU, S.T. MANSON, Georgia State University —

Photoionization cross section calculations are performed on potassium-like transition metal ions (Ti$^{3+}$, V$^{4+}$, Cr$^{5+}$, Mn$^{6+}$ and Fe$^{7+}$) using both non-relativistic (LS-coupling) and relativistic (Breit-Pauli) R-matrix methods for the ground ([Ne]3s23p63d 2D$^e_{3/2}$) and the first excited ([Ne]3s23p63d 2D$^e_{5/2}$) states of each of the five ions. Photon energies up to the first 3p ionization threshold are considered. The results show that for Ti$^{3+}$, the cross sections are dominated by the giant (3p \rightarrow 3d) resonances which are analyzed and identified, while for the four other ions (V$^{4+}$, Cr$^{5+}$, Mn$^{6+}$ and Fe$^{7+}$), the 3p \rightarrow 3d resonances lie below the ionization threshold, and the cross sections are dominated by 3p53d ns and 3p53d nd Rydberg series of resonances. Comparison of the Ti$^{3+}$ results with available theoretical and experimental data shows good agreement. This work is supported by DOE and NSF.

Ayao Sossah
Georgia State University

Date submitted: 21 Jan 2010