Abstract Submitted for the DAMOP10 Meeting of The American Physical Society

The high-energy satellites of $L\alpha_2$ X-Ray transition in higher-Z atoms SURENDRA POONIA, Research Scientist (Atomic and X-Ray Spectroscopy) — The X-ray satellite spectra arising due to $2p_{3/2}^{-1}3x^{-1}-3x^{-1}3d^{-1}$ (x=s,p,d) transition array, in elements with Z=73 to 90, have been calculated. The energies of various transitions of the array have been determined by using available Hartree-Fock-Slater data on $1s^{-1}-2p^{-1}3x^{-1}$ and $2p_{3/2}^{-1}-3x^{-1}, 3x^{\prime-1}$ Auger transition energies and their relative intensities have been estimated by considering cross - sections of singly ionized $2x^{-1}$ (x \equiv s, p) states and then of subsequent Coster-Kronig and shake off processes. The calculated spectra have been compared with the measured satellite energies in $L\alpha_2$ spectra. It has been established that one satellite observed in the L α_2 region of the X-ray spectra of various elements and named α_s in order of increasing energy are mainly emitted by $2p_{3/2}^{-1}3d^{-1}-3d^{-2}$ transitions. It is observed that the satellite α_s in all these spectra can be assigned to the superposition of three intense transitions namely ${}^{3}P_{1} - {}^{3}D_{1}$, ${}^{3}D_{2} - {}^{3}D_{3}$ and ${}^{3}D_{2} - {}^{3}D_{1}$. The three remaining satellites in $_{80}$ Hg namely La₁₃, La₁₄ and La₁₇ are found to have different origin in different elements.

> Surendra Poonia Research Scientist (Atomic and X-Ray Spectroscopy)

Date submitted: 21 Jan 2010

Electronic form version 1.4