Abstract Submitted for the DAMOP10 Meeting of The American Physical Society

Measurement of the Polarizability of Ba^{2+1} ERICA L. SNOW, SUNY Fredonia, SHANNON L. WOODS, MARK E. HANNI, STEPHEN R. LUNDEEN, Colorado State University, CHARLES W. FEHRENBACH, Kansas State University — The dipole polarizability of Ba^{2+} was determined by spectroscopy of high-L Rydberg levels of Ba^+ , using the Resonant Excitation Stark Ionization Spectroscopy (RESIS) method. Beams of Ba^{2+} , obtained by sputtering solid Ba inside a 14 GHz permanent magnet ECR source at Kansas State University, captured a single electron from a dense Rb 12F Rydberg target, forming highly excited Rydberg levels of Ba^+ . Rydberg levels of Ba^+ with n=19 or 20 and L=5,6,7,8, and 9 were excited to a much higher level using a Doppler-tuned CO₂ laser and then detected by Stark ionization. The resolved fine structure of these levels, analyzed with the long-range polarization model, determined the polarizability of the ground state of Ba^{2+} .

¹Supported by the Chemical Sciences, Geosciences, and Biosciences Division of the Office of Basic Energy Science, U.S. Department of Energy

Stephen R. Lundeen Colorado State University

Date submitted: 21 Jan 2010

Electronic form version 1.4