Abstract Submitted for the DAMOP10 Meeting of The American Physical Society

Quantum defect analysis of $\mathrm{H_3^+} + \mathrm{e^-}$ system¹ JIA WANG, CHRIS GREENE, JILA and Department of Physics, University of Colorado, Boulder — The neutral triatomic hydrogen molecule ($\mathrm{H_3}$) plays an important role in astrophysics because its cation form $\mathrm{H_3^+}$ acts as a proton donor in chemical reactions occurring in interstellar clouds. As the simplest triatomic neutral molecule, $\mathrm{H_3}$ also attracts fundamental interest. Treating the system of $\mathrm{H_3}$ molecule as a Rydberg electron attaching to a $\mathrm{H_3^+}$ ion, we carry out *ab initio* study of the system with quantum defect theory, improving on some approximations used in existing theory.

¹This work was supported by NSF.

Jia Wang JILA and Department of Physics, University of Colorado, Boulder

Date submitted: 21 Jan 2010 Electronic form version 1.4