Abstract Submitted for the DAMOP10 Meeting of The American Physical Society

Relativistic many-body calculation of energies, lifetimes, hyperfine constants, multipole polarizabilities, and black-body radiation shift in ¹³⁷Ba II ULYANA SAFRONOVA, University of Nevada, Reno — Excitation energies of the [Xe] $ns_{1/2}$ [Xe] np_j , and [Xe] nd_j ($n \le 12$ and [Xe]= $1s^22s^22p^63s^23p^63d^{10}4s^24p^634d^{10}5s^25p^6$) in Ba II are evaluated. First-, second-, third-order, and all-order Coulomb energies and first- and second-order Coulomb-Breit energies are calculated. Electric-dipole $(6s_{1/2} - np_i, n = 6-26)$, electricquadrupole $(6s_{1/2} - nd_i, n = 5-26)$, and electric-octupole $(6s_{1/2} - nf_i, n = 4-26)$ matrix elements are calculated to obtain the ground state E1, E2, and E3 static polarizabilities. Scalar polarizabilities of the $ns_{1/2}$, np_i and nd_i states, and tensor polarizabilities of the $np_{3/2}$ and nd_j excited states of Ba⁺ are evaluated. All abovementioned matrix elements are determined using all-order methods. We investigate the hyperfine structure in 137 Ba II. The hyperfine A- and B-values are determined for the first the first low-lying levels up to n = 9. The quadratic Stark effect on hyperfine structure levels of ¹³⁷Ba II ground state is investigates. The calculated shift for the $(F = 2, M = 0) \leftrightarrow (F = 1, M = 0)$ transition is $-0.2931 \text{ Hz/(kV/cm)}^2$, in agreement with previous theoretical result -0.284(3). These calculations provide a theoretical benchmark for comparison with experiment and theory.

> Ulyana Safronova University of Nevada, Reno

Date submitted: 21 Jan 2010 Electronic form version 1.4