Abstract Submitted for the DAMOP10 Meeting of The American Physical Society

Rydberg atom formation in strongly correlated ultracold neutral plasmas GEORG BANNASCH, THOMAS POHL, MPI for the Physics of Complex Systems — In plasmas at very low temperatures the recombination into neutral atoms is dominated by three-body recombination (TBR), owing to the strong $\sim T^{-9/2}$ scaling of the recombination rate with the electron temperature. While this law is well established at high temperatures, the unphysical divergence as $T \rightarrow 0$ clearly suggest a breakdown in the low-temperature regime. Here, we use a combined molecular dynamics - Monte Carlo approach to investigate electron-ion recombination over a wide range of temperatures and densities. Through a careful analysis, we devise an approach that permits to distinguish recombined atoms from the surrounding plasma, i.e. to develop a chemical picture – even in the strongly coupled regime. Our method reproduces the known behavior of the recombination for high temperatures, but reveals significant deviations as T decreases. We discuss the fate of the kinetic bottleneck and resolve the discussed divergence-problem in the ultracold domain.

> Thomas Pohl MPI for the Physics of Complex Systems

Date submitted: 22 Jan 2010

Electronic form version 1.4