Abstract Submitted for the DAMOP10 Meeting of The American Physical Society

Nuclear dynamics of dissociative electron attachment to water via the conically intersecting ${}^{2}B_{2}$ and ${}^{2}A_{1}$ states 1 DANIEL HAXTON, THOMAS RESCIGNO, Lawrence Berkeley National Laboratory, C. WILLIAM MCCURDY, University of California, Davis and Lawrence Berkeley National Laboratory — We present theoretical results on the nuclear dynamics of dissociative electron attachment to the water molecule via the highest-energy ²B₂ electronic Feshbach resonance state of the anion. These results accompany the experimental results of Adaniya et al. The process in question is complex, involving a conical intersection of Born-Oppenheimer potential energy surfaces and several two-and three-body final fragment states. Surface-hopping classical trajectory calculations including the effect of autoionization are performed with previously calculated potential energy surfaces for the intersecting ${}^{2}B_{2}$ and ${}^{2}A_{1}$ states, and the amplitude for attachment as a function of nuclear geometry and incident angle of the electron in the molecular frame is also determined. This permits a reconstruction of the lab frame fragment angular distribution and the explanation of its features in terms of the multidimensional nuclear dynamics of the dissociation process.

¹This work has been supported by the DOE.

Daniel Haxton Lawrence Berkeley National Laboratory

Date submitted: 22 Jan 2010

Electronic form version 1.4