Testing the Lorentz Invariance of Light with a Birefringent Cavity

MICHAEL HOHENSEE, FRANCISCO MONSALVE, HOLGER MÜLLER, University of California, Berkeley, CA 94720 — We report on the progress of a novel experimental test of the isotropy of c, based on measuring the birefringence of a single optical cavity. Tests of the isotropy of c typically compare the phase velocities of two orthogonally propagating optical modes. Using pairs of high-finesse optical cavities, such tests have constrained direction-dependent variations in the speed of light to the level of parts per 10^{17} [1-2]. The precision of these tests is presently limited by systematic stochastic fluctuations in the relative length of such cavities. We have developed an experiment which compares the phase velocities of two orthogonally polarized optical modes in a single high-finesse dielectric-filled optical cavity. Since anisotropies in c can make otherwise isotropic materials optically birefringent [3-4], we anticipate that we will be able to place significantly tighter constraints on Lorentz violation for photons.

Michael Hohensee
University of California, Berkeley, CA 94720

Date submitted: 25 Jan 2010