Abstract Submitted for the DAMOP10 Meeting of The American Physical Society

Angular Dependance of Auger Decay of Double Core Vacancies in N₂ JAMES CRYAN, JAMES GLOWNIA, PHILIP BUCKSBAUM, RYAN COF-FEE, The PULSE Institute, SLAC National Accelerator Lab, LCLS AMO 02709 COLLABORATION¹ — We present a first experimental step toward angle-resolved multiple-core vacancy Auger electron spectroscopy. We observe Auger decay for both single-site and double-site K^{-2} vacancy pairs in N₂ and find that the singlesite double vacancy undergoes an Auger process whose angular pattern qualitatively resembles previous measurements of $1\sigma_g^{-1}$ Auger decay. In addition, we measure the angle dependence of the Auger decay of single core vacancies to quasi-bound molecular dication states. Ultimately, the combination of impulsive molecular alignment and x-ray free-electron lasers enables angle resolution for few femtosecond chemical dynamics.

¹www.pulse.slac.stanford.edu/amo02709

James Cryan The PULSE Institute for Ultrafast Energy Science

Date submitted: 22 Jan 2010

Electronic form version 1.4