Zero energy resonances in reactive scattering: anomalous temperature dependence of atom–molecule reaction rates I. SIMBOTIN, S. GHOSAL, R. CÔTÉ, University of Connecticut — We show that rate coefficients for inelastic processes—reactive, or nonreactive—in the (ultra)cold regime can be greatly affected by the presence of a resonance pole near $E = 0$ in the entrance channel. This problem has been investigated previously [E. Bodo et al., J. Phys. B 37 (2004) 3641] but their analysis was restricted to the energy dependence of the reaction cross section for a particular case. Here, we present the general case, and we emphasize the possibility of a wide intermediate regime of temperatures where the rate coefficient has an anomalous temperature dependence; namely it increases as $1/T$ when T decreases. Eventually, the temperature dependence reverts back to the standard behavior given by Wigner’s law, i.e., the rate coefficient becomes constant, but this may only be recovered at extremely low T (very deep into the ultracold regime). Thus, at least in some exceptional cases, most of the (ultra)cold regime could be dominated by this anomalous behavior.

I. Simbotin
University of Connecticut

Date submitted: 25 Jan 2010