Abstract Submitted for the DAMOP10 Meeting of The American Physical Society Quantum Information Processing with Two Atomic Species Confined in Independently Controlled Optical Lattices KATHY-ANNE BRICK-MAN SODERBERG, ARJUN SHARMA, ANDREAS KLINGER, SKYLER DE-GENKOLB, NATHAN GEMELKE, CHENG CHIN, Department of Physics and The James Franck Institute, The University of Chicago — We present progress toward scalable quantum information processing using fermionic ⁶Li and bosonic ¹³³Cs each confined in an independently controlled optical lattice. The ⁶Li atoms, loaded with one atom per site, act as quantum bits (qubits) to store information while ¹³³Cs, loaded with one atom per one hundred sites, is a messenger bit to mediate gate operations and carry entanglement between ⁶Li qubits. We demonstrate the fabrication of identical and stable hexagonal optical lattices at 680nm for ⁶Li and 1064nm for ¹³³Cs using a diffraction grating and common mode optics. Qubit operations are performed by spatially overlapping a messenger and qubit. This is done by phase shifting the lattices with an electro-optic modulator array that can either adiabatically shift an atom over one lattice site in 11μ s, or rapidly shift the lattice in 100ns such that no atomic motion occurs. These two modes allow the messenger atom to "step" across the lattice to address any (distant) ⁶Li qubit. > Kathy-Anne Brickman Soderberg Department of Physics and The James Franck Institute, The University of Chicago Date submitted: 26 Jan 2010 Electronic form version 1.4