Nuclear Spin-Dependent Parity Violation in Diatomic Molecules

SIDNEY CAHN, DAVID RAHMLOW, MATTHEW STEINECKER, JEFFREY AMMON, EMIL KIRILOV, Yale University, EDWARD DEVENEY, Bridgewater State University, RICHARD PAOLINO, United States Coast Guard Academy, DAVID DEMILLE, Yale University — Nuclear spin-dependent parity nonconservation (NSD-PNC) effects arise from exchange of the Z^0 boson (parameterized by the electroweak coupling constants $C_2\{P,N\}$) between electrons and the nucleus and from the interaction of electrons with the nuclear anapole moment, a parity-odd magnetic moment. The latter scales with the nucleon number A of the nucleus as A^7, while the Z^0 coupling is independent of A; the former will be the dominant source of NSD-PNC in nuclei with $A \geq 20$. The most precise result on NSD-PNC to date comes from a measurement of the hyperfine dependence of atomic PNC in ^{133}Cs, but this effect can be dramatically enhanced in diatomic molecules by bringing two levels of opposite parity close to degeneracy in a strong magnetic field. Level crossings have been observed in ^{138}BaF as a precursor to the test for parity violation in ^{137}BaF. We report on our measurements and planned design improvements to improve sensitivity in preparation for the parity violation experiment.

1Supported by a grant from the National Science Foundation