Abstract Submitted
for the DAMOP10 Meeting of
The American Physical Society

Interacting Bose-Fermi Mixtures in 3D Optical Lattice Potentials
SEBASTIAN WILL, THORSTEN BEST, SIMON BRAUN, PHILIPP RONZHEIMER, ULRICH SCHNEIDER, MICHAEL SCHREIBER, KIN CHUNG FONG, LUCIA HACKERMÜLLER, TIM ROM, DIRK-Sören LÜHMANN, IMMANUEL BLOCH, LMU Munich — Mixtures of quantum gases in optical lattices form novel quantum many-body systems, whose properties are governed by the interplay of quantum statistics, inter- and intraspecies interactions, as well as the relative number of atoms of the components. In particular, degenerate Bose-Fermi mixtures have only recently come within experimental reach and stimulated theoretical investigations. A variety of quantum phases have been predicted including perturbed Mott insulating states, polaron-like quasi-particles or supersolid ordering. In our experiment we cool bosonic 8Rb and fermionic 40K down to simultaneous quantum degeneracy and investigate this Bose-Fermi mixture with tunable interspecies interactions in a three dimensional optical lattice. By studying the quantum phase evolution in an array of coherent states of 8Rb, we have been able to establish a tool to measure absolute interaction energies on lattice sites with high precision. In the presence of 40K, this technique reveals the marked influence of varying interspecies interactions on the atomic density distribution as well as the Bose-Bose and the Bose- Fermi interaction energies, quantitatively elucidating the role of interactions in the mixture.

Sebastian Will
Ludwig-Maximilians-Universität München

Date submitted: 22 Jan 2010

Electronic form version 1.4