Abstract Submitted for the DAMOP10 Meeting of The American Physical Society

Asymmetry in the momentum distribution of H+p from dissociative ionization of H_2 controlled by the carrier-envelope phase of a fewcycle pulse¹ SHUO ZENG, FATIMA ANIS, B.D. ESRY, J.R. Macdonald Laboratory, Department of Physics, Kansas State University — We present theoretical results on the interaction of H_2 with an ultrashort linearly polarized laser pulse of 6 fs duration. We investigate the carrier-envelope phase effects of this ultrashort laser pulse on the asymmetry of the momentum distribution of H+p along the laser polarization direction. To do so, we model the H_2 ionization by launching a coherent wavepacket on H_2^+ potential curves at each field maximum, and then propagate wavepackets in time on H_2^+ Born-Oppenheimer potential curves coupled by the laser. Nuclear rotation and vibration are both included in the Schrödinger equation for H_2^+ . Our results will be compared to a recent experimental measurement [1]. We will also compare our results to calculations neglecting rotation and discuss the limitations of such a model.

[1] Manuel Kremer et al., Phys. Rev. Lett. 103.213003 (2009)

¹Supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy.

Shuo Zeng J.R. Macdonald Laboratory, Dept of Physics, Kansas State University

Date submitted: 27 Jan 2010 Electronic form version 1.4