A Test of CPT and Lorentz Violation Using a Compact, Rotating Co-Magnetometer

JUSTIN BROWN, SYLVIA SMULLIN, THOMAS KORNACK, MICHAEL ROMALIS, Princeton University — The K-3He co-magnetometer contains overlapping, coupled ensembles of high-density polarized K vapor and 3He nuclei that cancel external magnetic fields by a factor of $10^3 - 10^4$, but remain sensitive to anomalous electron and neutron spin couplings. A compact three-layer μ-metal and inner ferrite shield further reduce magnetic interactions by a factor of 10^8. The co-magnetometer, including lasers and a vibration isolation platform, are operated in a 1 Torr vacuum to achieve equivalent sensitivity of 2 fT/$\sqrt{\text{Hz}}$ at 0.02 Hz. We mount the vacuum bell jar and control electronics on a rotating platform allowing 180° reversals of the apparatus every 22 seconds. Since the co-magnetometer is also a sensitive gyroscope, Earth’s rotation contributes significantly to our signal. We collect data in the North-South and East-West orientations, corresponding to the maximum and zero of the gyroscopic signal which are susceptible to different systematic effects. A sidereal, out-of-phase modulation in the two signals would provide evidence for a Lorentz violating field. We have automated the experiment to run 24 hours a day and achieved uninterrupted operation over several weeks. We have achieved more than an order of magnitude improvement in sensitivity to anomalous neutron coupling relative to existing limits.

1This work is supported by NSF Grant PHY-0653433.

Justin Brown
Princeton University

Date submitted: 27 Jan 2010

Electronic form version 1.4