Strong-field optimal control with 2D learning algorithms GUAN-YEU CHEN, BEN CRIST, WENDELL T. HILL, III, University of Maryland — Several years ago we introduced the first 4p-image spectrometer for studying strong-field dissociative-ionization processes (e.g., Coulomb explosion) in small molecular systems. We now employ imaging and this spectrometer, in conjunction with pulse-shaping and learning algorithms, to investigate strong-field control of dynamics with a two-dimensional fitness function. As an example, focusing on various patterns on images has allowed us to isolate for control a particular molecular mode to control, such as bending in carbon dioxide [1]. Two-dimensional fitness functions provide access to the dynamics that are either difficult to access or unrevealed through scalar fitness functions. As a consequence, exploiting these additional degrees of freedom is enabling us to make steps towards deciphering optimal control fields. In this poster we will provide details of image-based learning algorithms. We will give examples of using multi-dimensional fitness functions and discuss how they can be used to control molecular dynamics.


Guan-Yeu Chen
University of Maryland

Date submitted: 27 Jan 2010