Abstract Submitted for the DAMOP10 Meeting of The American Physical Society

Recombination Reactions in the Thermal Decomposition of An Investigation of Benzene and Naphthalene Formation¹ Anisole: ADAM SCHEER, BARNEY ELLISON, University of Colorado-Boulder, CALVIN MUKARAKATE, DAVID ROBICHAUD, MARK NIMLOS, National Renewable Energy Laboratory — Thermal decompositions of anisole $(C_6H_5OCH_3)$ and methyldeuterated anisole $(C_6H_5OCD_3)$ are studied using a hyperthermal tubular reactor and photoionization reflectron time-of-flight mass spectrometer. Gas exiting the reactor is subject to a supersonic expansion after a residence time of 65 μ s, allowing detection of highly chemically reactive radical species. Anisole decomposes through loss of a methyl group (\bullet CH₃) to form phenoxy radical (C₆H₅O \bullet), followed by ejection of a CO to form cyclopentadienyl radical (c- C_5H_5 ; CPDR). Benzene is generated primarily by thermal decomposition of methylcyclopentaliene ($C_5H_5CH_3$; MCPD). The MCPD results from methyl radical recombination with CPDR. The MCPD then undergoes two hydrogen atom losses and a ring expansion resulting in benzene. At $T_{wall} = 1200$ °C – 1300 °C a large amount of propargyl radical (CH₂CCH) is observed. Propargyl radical recombination accounts for a small fraction of the observed benzene. Naphthalene and its precursor intermediates $(C_{10}H_{10})$ $C_{10}H_9$), resulting from CPDR recombination, are also observed. The presence of benzene and naphthalene is confirmed with resonance-enhanced multiphoton ionization (REMPI).

¹The U.S. DOE Office of the Biomass Program provided funding for this work.

Adam Scheer University of Colorado-Boulder

Date submitted: 25 Mar 2010

Electronic form version 1.4