Novel Feshbach resonances in a ^{40}K spin-mixture1 J.T.M. WALRAVEN, A. LUDEWIG, T.G. TIECKE, University of Amsterdam — We present experimental results on novel s-wave Feshbach resonances in ^{40}K spin-mixtures. Using an extended version of the Asymptotic Bound-state Model (ABM) [1] we predict Feshbach resonances with more promising characteristics than the commonly used resonances in the $|F,m_F\rangle = |9/2,-9/2\rangle + |9/2,-7/2\rangle$ and $|9/2,-9/2\rangle + |9/2,-5/2\rangle$ spin mixtures. We report on an s-wave resonance in the $|9/2,-5/2\rangle + |9/2,-3/2\rangle$ mixture. We have experimentally observed the corresponding loss-feature at $B_0 \sim 178$ G with a width of ~ 10G. This resonance is promising due to its large predicted width and the absence of an overlapping p-wave resonance. We present our recent results on measurements of the resonance width and the stability of the system around this and other observed s-wave and p-wave resonances.

1Supported by FOM program on Quantum Gases.

J.T.M. Walraven
University of Amsterdam

Date submitted: 29 Mar 2010

Electronic form version 1.4