Electric-field-induced dissociation of heavy Rydberg ion-pair states

CARLOS REINHOLD, Oak Ridge National Laboratory, SHUHEI YOSHIDA, Vienna University of Technology, CHANGHAO WANG, BARRY DUNNING, Rice University — A classical trajectory Monte Carlo approach is used to simulate the dissociation of $\text{H}^+\cdot\text{F}^-$ and $\text{K}^+\cdot\text{Cl}^-$ heavy-Rydberg ion pairs induced by a ramped electric field. Such field-induced dissociation is used experimentally to detect ion-pair states and analyze their binding energies. The simulations include the effects of the strong short-range repulsive interaction associated with ion-pair scattering. Their predictions are in good agreement with experimental data for Stark wavepackets probed by a ramped field, demonstrating that many of the characteristics of field-induced dissociation can be well described using a purely classical model. The data also show that states with a given value of principal quantum number (i.e., binding energy) can dissociate over a broad range of applied fields, the exact field being governed by the initial orbital angular momentum and orientation of the state.

1Research supported by the NSF, the Robert A. Welch Foundation, the OBES US DoE to ORNL, and by the FWF (Austria)

Carlos Reinhold
Oak Ridge National Laboratory

Date submitted: 20 Jan 2011

Electronic form version 1.4