T-matrix approach for few-body problems in ultracold atomic gases

XIAOLING CUI, Institute for Advanced Study in Tsinghua University, COLD ATOM THEORY GROUP IN CASTU TEAM — We propose a systematic T-matrix approach to solve few-body problems in a dilute atomic gas. The problem is generally reduced to a matrix equation expanded by a set of orthogonal molecular states, describing external center-of-mass motions of pairs of interacting particles; while each matrix element is guaranteed to be finite by a proper renormalization for internal relative motions. This approach is able to incorporate various scattering issues in a single framework, including the bound state, effective scattering length and reduced interaction in lower dimension(s). Finally this method is applied to study three fermions in a (rotating) harmonic trap, where exotic scattering properties are uniquely identified and the results should shed light on quantum Hall physics in this system.

1Institute for Advanced Study, Tsinghua University

Xiaoling Cui
Institute for Advanced Study in Tsinghua University

Date submitted: 27 Jan 2011