DAMOP11-2011-000127

Abstract for an Invited Paper for the DAMOP11 Meeting of the American Physical Society

Why isn't the atmosphere completely ionized? THOMAS M. MILLER, Boston College and Air Force Research Laboratory

We have carried out experiments on electron attachment and positive ion / negative ion neutralization at thermal energies using the VENDAMS method (variable electron and neutral density attachment mass spectrometry, which is an extension of the flowing-afterglow Langmuir-probe technique). The VENDAMS method allows us to determine rate coefficients for ion-ion mutual neutralization along with neutral product branching fractions. The method is limited at present to noble gas positive ions. A major advantage of the method is that electron attachment to labile molecules such as POCl₂ or C_2F_5 may be studied, if these molecules are present in the apparatus as products of the primary neutralization reaction. Measurements have been made on electron attachment to SF_2 , SF_3 , SF_4 , SF_5 , and SF_6 , for example, along with rate coefficients and neutral product distributions for SF_5^- and SF_6^- neutralization by $Ar^+[1]$ and for SF_4^- , SF_5^- , and SF_6^- neutralization by Ar^+ and Kr^+ at 300 K. These and other electron attachment and ion-ion neutralization results, measured over a temperature range 300-600 K, will be presented. In addition, we have identified a new plasma process in which electrons act as a third body to remove energy from an orbiting ion-ion complex, which enhances the neutralization rate coefficient. Details of this process, electroncatalyzed mutual neutralization, have been recently published, [2] and new results will be presented for various species.

Collaborators in this work: Nicholas S. Shuman, Albert A. Viggiano, Jeffrey F. Friedman, Connor M. Caples, Raymond J. Bemish, and Jürgen Troe.

[1] N. S. Shuman, T. M. Miller, and A. A. Viggiano, J. Chem. Phys. **133**, 234304 (2010).

[2] N. S. Shuman, T. M. Miller, R. J. Bemish, and A. A. Viggiano, Phys. Rev. Lett. 106, 018302 (2011).