Abstract Submitted for the DAMOP11 Meeting of The American Physical Society

Fragmentation dynamics in O_2^{q+} and CO^{q+} molecules in intense laser pulses¹ M. MAGRAKVELIDZE, J. R. Macdonald Laboratory, Kansas State University, C.M. AIKENS, Department of Chemistry, Kansas State University, U. THUMM, J. R. Macdonald Laboratory, Kansas State University — We investigate influence of non-adiabatic couplings on the dissociation and Coulomb-explosion (CE) dynamics of diatomic molecules in intense laser fields. To identify electronic states that contribute to the molecular dynamics, we first calculate adiabatic potential curves and electric dipole-coupling (DC) elements with the quantum chemistry code GAMESS.² Next we calculate fragment-kinetic-energy-release (KER) spectra as a function of time and quantum-beat frequency³ for one molecular potential curve at a time and compare calculated revival times and beat frequencies with experimental data.⁴ After identifying relevant electronic states we include laser-induced DCs in improved wave-packet propagation calculations including two (or more) electronic states and again compare KER spectra with experimental results.⁵ We apply this scheme to O₂ and CO.

¹Supported by the US DOE and NSF.
²M. W. Schmidt et al., J. Comput. Chem. 14, 1347-1363(1993)
³M. Magrakvelidze et al., PRA 79, 033410 (2009)
⁴S. De et al., PRA 82, 013408 (2010)
⁵Ibid.

M. Magrakvelidze J. R. Macdonald Laboratory, Kansas State University

Date submitted: 03 Feb 2011

Electronic form version 1.4