Understanding Plasma Optical Emission Diagnostics using Ar Excitation Cross Sections\(^1\) JOHN B. BOFFARD, R.O. JUNG, CHUN C. LIN, AMY WENDT, University of Wisconsin-Madison — Electron-atom collisions are the primary excitation mechanism of low-temperature plasmas. Nevertheless, the emissions of most lines are the result of many excitation channels: direct excitation from the ground state, excitation into higher levels that radiatively cascade into the level of interest, and excitation from long-lived metastable atoms in the plasma. Incorporating these processes into a radiative model, we have used Ar emissions to determine the electron energy distribution functions of inductively coupled plasmas\(^1\). Emissions from the Ar\((3p_5)\) and Ar\((3p_9)\) levels, at 419.8 nm and 420.1 nm respectively, are found to exhibit a particularly interesting intensity ratio that is very sensitive to plasma conditions. The 420.1/419.8 line ratio varies from \(\sim 1\) at high electron temperatures \((T_e)\), to \(\sim 3\) at low \(T_e\). These variations can be explained in terms of the nearly equal ground state optical emission cross sections, and the vastly different cross sections out of the metastable levels\(^2\). We explore the atomic physics that drives this particular line ratio and how it can be used to non-invasively measure the electron temperature of argon containing plasmas.

\(^1\)Supported by the National Science Foundation.

\(^1\) Plasma Sources Sci. Technol. 19, 065001 (2010);