Abstract Submitted for the DAMOP11 Meeting of The American Physical Society

Formation of Be_2^+ molecules in the metastable $\mathrm{B}^2\Sigma_g^+$ state by ultracold photoassociation SANDIPAN BANERJEE, JASON BYRD, ROBIN CÔTÉ, H MICHELS, JOHN MONTGOMERY, Dept. of Physics, University of Connecticut — We suggest a photoassociation (PA) scheme to form ultracold Be_2^+ molecules in the long-range outer well of the $\mathrm{B}^2\Sigma_g^+$ state. In our previous work 1 , we have calculated the ground states of Be_2^+ dimer and have analyzed in detail the double well nature of the $\mathrm{B}^2\Sigma_g^+$ state. We also note that the vibrational levels in the outer well of the $\mathrm{B}^2\Sigma_g^+$ state have significantly longer radiative lifetimes (\sim ms) than the ones in the inner well ($\sim \mu$ s). Using similar ab initio methods (valence full CI), we have now calculated the excited $^2\Pi_{u/g}$ and $^2\Sigma_{u/g}$ states. For the proposed PA scheme, we populate the $\mathrm{A}^2\Pi_u$ state and radiatively decay into the $\mathrm{B}^2\Sigma_g^+$ state of Be_2^+ . We also calculate transition dipole moment, Frank-Condon factors between the $\mathrm{A}^2\Pi_u$ and $\mathrm{B}^2\Sigma_g^+$ states.

¹S. Banerjee *et al.* Chem. Phys. Lett. 496 (2010) 208.

Sandipan Banerjee Dept. of Physics, University of Connecticut

Date submitted: 01 Mar 2011 Electronic form version 1.4