Coupling a Bose condensate to micromechanical oscillators1

CHANDLER KEMP, ELI FOX, SCOTT FLANZ, MUKUND VENGALATTORE, Cornell University — We describe the construction of a compact apparatus to investigate the interaction of a spinor Bose-Einstein condensate and a micromechanical oscillator. The apparatus uses a double magneto-optical trap, Raman sideband cooling, and evaporative cooling to rapidly produce a 87Rb BEC in close proximity to a high Q membrane. The micromotion of the membrane results in small Zeeman shifts at the location of the BEC due to a magnetic domain attached to the oscillator. Detection of this micromotion by the condensate [1] results in a backaction on the membrane. We investigate prospects of using this backaction to generate nonclassical states of the mechanical oscillator [2].

1This work was funded by the DARPA ORCHID program.