Progress towards a “blue” potassium MOT DAVID MCKAY, DAN FINE, DYLAN JERVIS, GRAHAM EDGE, JOSEPH THYWISSEN, University of Toronto — One difficulty when preparing quantum degenerate gases of potassium 40 is the low efficiency of sub-Doppler cooling. In this talk, we discuss how we are attempting to circumvent this problem by implementing a “blue” MOT for 40K on the non-cycling 4S1/2 →5P3/2 transition, which has a wavelength of 404.53nm and a decay rate of 1.17MHz. The Doppler temperature should be 27µK, which is a factor of five improvement over the D2 transition at 767nm. This lower temperature would also facilitate in-situ imaging of atoms in optical lattices. The laser setup consists of a cooled diode injection locked to an external cavity diode laser. The master laser is in turn locked to 39K saturation spectroscopy in a heated vapor cell. The proximity of this 4S-5P transition to the wavelength used in “Blu-ray” technology provides a relatively inexpensive source of laser diodes with powers up to 150mW. A dual MOT will be implemented using dichroic mirrors and waveplates for loading and capture with 767nm, followed by a switch to a “blue” MOT for late-stage cooling before loading into a magnetic trap. We will also present results on the spectroscopy of the 40K 5P3/2 hyperfine levels using our setup.

David McKay
University of Toronto

Date submitted: 04 Feb 2011

Electronic form version 1.4