A BEC as a quantum memory for the polarisation of light

STEFAN RIEDL, MATTHIAS LETTNER, CHRISTOPH VO, SIMON BAUR, STEPHAN DÜRR, GERHARD REMPE, Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany — The polarisation of light is a much-used workhorse in quantum cryptography and quantum-information applications. We experimentally realise a quantum memory for arbitrary polarisation states of a light pulse, using an atomic multilevel scheme and electromagnetically induced transparency (EIT) in a Bose-Einstein condensate (BEC). In the experiment, the energy of the retrieved light pulse reaches values as high as 50% of the incoming light pulse. Furthermore, the observed fidelity of the polarisation state after the readout reaches values up to 99%.

Stefan Riedl
Max-Planck-Institut für Quantenoptik,
Hans-Kopfermann-Straße 1, 85748 Garching, Germany

Date submitted: 04 Feb 2011