Charge Exchange in $O^{7+} + H$ collisions

J.L. NOLTE, Y. WU, P.C. STANCIL, University of Georgia, R.J. BUENKER, Bergische Universität Wuppertal, D.R. SCHULTZ, Y. HUI, I.N. DRAGANIC, C.C. HAVENER, Oak Ridge National Laboratory — Charge exchange between heavy solar wind ions and interstellar neutrals is thought to be a dominant contributor to the heliospheric component of the soft x-ray background, as the highly charged resultant ion emits an x-ray photon through the electron’s cascade to the ground state. In this study we calculate $n−$, $l−$, $S−$-resolved charge capture cross sections into the dominant $n = 4, 5$ and 6 manifolds for the system $O^{7+} + H$, over a range of collision energies 0.01-50 keV/u, using the molecular orbital close coupling method. We compare our results with classical trajectory Monte Carlo, atomic orbital close coupling, and experimental results.

This work is partially supported by NASA grants NNX09AV46G, NNG09WF24I, and NNH07ZDA001N.