DAMOP11-2011-000731

Abstract for an Invited Paper for the DAMOP11 Meeting of the American Physical Society

Al⁺ optical clocks for fundamental physics, geodesy, and quantum metrology¹ CHIN-WEN CHOU, National Institute of Standards and Technology

Laser-cooled trapped atoms have long been recognized as potentially very accurate frequency standards for clocks. Ultimate accuracies of 10^{-18} to 10^{-19} appear possible, limited by the time-dilation of trapped ions that move at laser-cooled velocities. The Al⁺ ion is an attractive candidate for high accuracy, owing to its narrow electronic transition in the optical regime and low sensitivity to ambient field perturbations. Precision spectroscopy on Al⁺ is enabled by quantum information techniques. With Al⁺ "quantum-logic" clocks, the current accuracy of 8.6×10^{-18} has enabled a geo-potential-difference measurement that detected a height change of 37 ± 17 cm due to the gravitational red-shift. We have also observed quantum coherence between two Al⁺ ions with a record Q-factor of 3.4×10^{16} , and compared the Al⁺ resonance frequency to that of a single Hg⁺ ion to place limits on the temporal variation of the fine-structure constant. This work is done in collaboration with D. B. Hume, M. J. Thorpe, D. J. Wineland, and T. Rosenband.

¹Work supported by ONR, AFOSR, DARPA, NSA, and IARPA.