Abstract Submitted for the DAMOP11 Meeting of The American Physical Society

Charge exchange and chemical reactions with trapped thorium ions MICHAEL DEPALATIS, LAYNE CHURCHILL¹, MICHAEL CHAPMAN, Georgia Institute of Technology — Most atomic nuclei have excitation energies ranging from keV to MeV. A unique exception is the ²²⁹Th nucleus, which has an excited state just several eV above the nuclear ground state.² Th³⁺ provides a convenient level structure for laser cooling in an rf Paul trap.³ Unlike many ions commonly utilized in precision measurements, the trap lifetime of Th³⁺ is limited to only several minutes. This is a severe limitation to experiments involving ²²⁹Th as it is only available in minute quantities. Here we have studied the loss mechanisms by introduction of various contaminants and analyzed reaction products using trapped ion mass spectrometry techniques.⁴

Michael DePalatis Georgia Institute of Technology

Date submitted: 07 Feb 2011 Electronic form version 1.4

¹Permanent Address: Johns Hopkins University Applied Physics Lab

²B. R. Beck et al., Phys. Rev. Lett. **98**, 142501 (2007).

³C. J. Campbell et al., Phys. Rev. Lett **102**, 233004 (2009).

⁴L. R. Churchill et al., Phys. Rev. A 83, 012710 (2011).