DAMOP11-2011-000935 Abstract for an Invited Paper for the DAMOP11 Meeting of the American Physical Society ## Theory of attosecond transient absorption¹ KENNETH SCHAFER², Department of Physics and Astronomy, Louisiana State University Attosecond transient absorption spectroscopy is potentially a powerful tool for studying electron dynamics on an ultrafast time scale. We present a theoretical study of transient absorption and reshaping of extreme ultraviolet (xuv) pulses by atoms dressed with a moderately strong infrared (ir) laser field. We formulate the atomic response using a time-frequency approach based on the time-dependent dipole induced by the light fields. We study attosecond transient absorption in a macroscopic gas by incorporating the time-frequency approach into a solution of the coupled Maxwell-Schroedinger equations. ¹In collaboration with Mette Gaarde, Department of Physics and Astronomy, Louisiana State University. ²Work supported by National Science Foundation grants number PHY-0701372 and PHY-1019071