Atomic polarisabilities, hyperpolarisabilities and the factorisation of molecular interactions

J.M. ROSSI, B.A. RIGSBEE, K.G. ROLLIN, M.W.J. BROMLEY, Department of Physics and Computational Science Research Center, San Diego State University, San Diego CA, JIM MITROY, School of Engineering, Charles Darwin University, Darwin, NT, Australia — The properties of one and two-electron atoms and their molecules are calculated numerically using configuration interaction and perturbative methods. Firstly, we present calculations of the dynamic dipole and hyperpolarisabilities of the ground and low-lying excited states of atoms emphasising low-energy fields of interest in atomic clocks, and high-energy excitations that probe near Rydberg states. Theoretical expressions will be presented that factorise the long-range dispersion forces between two atoms into their individual scalar and tensor dipole polarisabilities at imaginary frequencies. This method yields C_6 dispersion coefficients in agreement with the latest theoretical values for both homo-nuclear and the hetero-nuclear interactions, eg. Li($2s$)-H($1s$). The application of this methodology to di-atomic molecular symmetries involving non-s-wave atomic states will be emphasised.

1Supported by National Science Foundation grants PHY-0970127, CHE-0947087 and by Australian Research Council Project DP-1092620
2NSF S-STEM Scholar

Michael Bromley
Department of Physics and Computational Science Research Center,
San Diego State University, San Diego CA

Date submitted: 08 Feb 2011

Electronic form version 1.4