Ionization dynamics inside femtosecond enhancement cavities1

DAVID CARLSON, JOHN MONGELLI, EWAN WRIGHT, R. JASON JONES,
University of Arizona — Intra-cavity high harmonic generation utilizing femtosecond enhancement cavities (fsEC) has been shown as a route to generate frequency combs in the vacuum-ultraviolet. Such VUV frequency combs have the potential to enable precision spectroscopy in this otherwise difficult to access spectral region. Pulse energies exceeding 25 \(\mu \)J are achievable inside a fsEC with peak intensities at the intracavity focus above \(1 \times 10^{14} \) W/cm\(^2\). At these intensities, we identify fundamental limitations to the intracavity pulse evolution due to ionization induced phase shifts and spectral blue shifting. Numerical simulations and experimental measurements of the intra-cavity ionization dynamics will be presented. We show that the fsEC can itself be used for precise measurements of extreme optical nonlinearities.

1We acknowledge partial support by the National Science Foundation and DARPA.