Abstract Submitted for the DAMOP11 Meeting of The American Physical Society Optical trapping and cooling of 87 Rb with a 1550 nm fiber laser ABRAHAM OLSON, PING WANG, ROBERT NIFFENEGGER, QIANLI MA, YONG P. CHEN, Purdue University — We have investigated optical trapping and cooling of 87 Rb with a 1550nm single-frequency, fiber laser. We present a technique to map out the 3D spatial intensity profile of an optical dipole trap by imaging a background, untrapped cold atomic cloud. The 1550nm laser causes a strong AC Stark shift [1] of the excited state $(5P_{3/2})$ of 87 Rb which we image by driving the D2 transition. Such Stark tomography allows us to use an untrapped cloud of 87 Rb to characterize the potential trap depth, beam waist, trapping frequency, beam quality factor (M^2) , and astigmatism of the trap beam. We also investigated schemes for all- optical evaporative cooling of trapped atoms to quantum degeneracy. Abraham Olson Purdue University Date submitted: 04 Feb 2011 Electronic form version 1.4