Towards a Measurement of the Nuclear Magnetic Octupole Moment of 137Ba

MATTHEW HOFFMAN, ADAM KLECZEWSKI, ERIC MAGNUSON, E.N. FORTSON, BORIS BLINOV, University of Washington — Measurements of hyperfine structure in a 133Cs atom resolved a nuclear magnetic octupole moment, Ω, much larger than expected. To explore this anomaly further, we are undertaking an experiment to measure the hyperfine structure of the 5D levels of 137Ba. We will selectively populate the $m=0$ states in the 5D$_{3/2}$ manifold by driving the 6S$_{1/2}$ to 5D$_{3/2}$ electric quadrupole transition using a commercially available Tm,Ho:YLF laser. Using the Pound-Drever-Hall frequency stabilization method we locked this laser to a high finesse cavity made of ULE glass and demonstrated a laser linewidth of less than 750 Hz. Once the barium ion is initialized to an $m=0$ state of a chosen 5D$_{3/2}$ hyperfine sublevel, we will perform RF spectroscopy to measure the hyperfine splittings with mHz precision. A measurement the 5D$_{3/2}$ hyperfine intervals combined with a similar measurement of the 5D$_{5/2}$ hyperfine intervals (using a 1762 nm fiber laser) will allow theorists to extract a value for Ω.

This work is supported by NSF Grant PHY-0906494.

V. Gerginov, A. Derevianko, and C. E. Tanner, Phys. Rev. Lett. 91, 072501