Abstract Submitted for the DAMOP11 Meeting of The American Physical Society

Towards a Measurement of the Nuclear Magnetic Octupole Moment of ¹³⁷Ba¹ MATTHEW HOFFMAN, ADAM KLECZEWSKI, ERIC MAG-NUSON, E.N. FORTSON, BORIS BLINOV, University of Washington — Measurements of hyperfine structure in a ¹³³Cs atom resolved a nuclear magnetic octupole moment, Ω , much larger than expected.² To explore this anomaly further, we are undertaking an experiment to measure the hyperfine structure of the 5D levels of ¹³⁷Ba. We will selectively populate the m=0 states in the 5D_{3/2} manifold by driving the 6S_{1/2} to 5D_{3/2} electric quadrupole transition using a commercially available Tm,Ho:YLF laser. Using the Pound-Drever-Hall frequency stabilization method we locked this laser to a high finesse cavity made of ULE glass and demonstrated a laser linewidth of less than 750 Hz. Once the barium ion is initialized to an m=0 state of a chosen 5D_{3/2} hyperfine sublevel, we will perform RF spectroscopy to measure the hyperfine splittings with mHz precision. A measurement the 5D_{3/2} hyperfine intervals combined with a similar measurement of the 5D_{5/2} hyperfine intervals (using a 1762 nm fiber laser) will allow theorists to extract a value for Ω .

¹This work is supported by NSF Grant PHY-0906494. ²V. Gerginov, A. Derevianko, and C. E. Tanner, Phys. Rev. Lett. 91, 072501

> Matthew Hoffman University of Washington

Date submitted: 08 Feb 2011

Electronic form version 1.4