Abstract Submitted for the DAMOP11 Meeting of The American Physical Society

Strong-field dissociation dynamics of NO²⁺: A multiphoton electronic or vibrational excitation?¹ BETHANY JOCHIM, E. WELLS, Augustana College, M. ZOHRABI, B. GAIRE, U. ABULIKEMU, K.D. CARNES, B.D. ESRY, I. BEN-ITZHAK, Kansas State University — A 3-D momentum imaging technique is employed to study intense ultrafast laser-induced dissociation of a metastable NO²⁺ beam. We focus on N⁺ + O⁺ coincidences and explore possible dissociation pathways using estimates of the initial vibrational population and transition rates between the X $^{2}\Sigma^{+}$ and A $^{2}\Pi$ states together with kinetic energy release and angular distribution spectra. Our analysis suggests that lower intensity pulses ($<10^{15}$ W/cm²) drive perpendicular transitions between these states. Higher intensity pulses ($\sim10^{16}$ W/cm²), on the other hand, yield a prominent contribution from molecules breaking parallel to the polarization. While the results are preliminary, an intriguing possibility is that this feature is due to a direct 2-photon transition to the vibrational continuum of the X $^{2}\Sigma^{+}$ state, *i.e.*, a multiphoton vibrational excitation on the electronic ground state.

¹Supported by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy. BJ also acknowledges NSF grant PHY-051599.

Bethany Jochim

Date submitted: 08 Feb 2011

Electronic form version 1.4