Strong-field dissociation dynamics of NO$^{2+}$: A multiphoton electronic or vibrational excitation? BETHANY JOCHIM, E. WELLS, Augustana College, M. ZOHRABI, B. Gaire, U. ABULIKEMU, K.D. CARNES, B.D. ESYR, I. BEN-ITZHAK, Kansas State University — A 3-D momentum imaging technique is employed to study intense ultrafast laser-induced dissociation of a metastable NO$^{2+}$ beam. We focus on N$^+$ + O$^+$ coincidences and explore possible dissociation pathways using estimates of the initial vibrational population and transition rates between the X $^2\Sigma^+$ and A $^2\Pi$ states together with kinetic energy release and angular distribution spectra. Our analysis suggests that lower intensity pulses ($<10^{15}$ W/cm2) drive perpendicular transitions between these states. Higher intensity pulses ($\sim10^{16}$ W/cm2), on the other hand, yield a prominent contribution from molecules breaking parallel to the polarization. While the results are preliminary, an intriguing possibility is that this feature is due to a direct 2-photon transition to the vibrational continuum of the X $^2\Sigma^+$ state, i.e., a multiphoton vibrational excitation on the electronic ground state.

1Supported by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy. BJ also acknowledges NSF grant PHY-051599.

Bethany Jochim