Spectroscopy of Z-pinch plasmas: how atomic and plasma physics merge and unfold new applications

ALLA SAFRONOVA, Physics Department, University of Nevada, Reno, NV 89557

Recent advances in theoretical and experimental work on plasma spectroscopy of Z-pinches are presented. We have shown that the University-scale Z-pinch generators are able to produce plasmas within a broad range of temperatures, densities, opacity, and radiative properties depending on the type, geometry, size, and mass of wire array loads and wire material. The full x-ray and EUV diagnostic set for detailed spatial and temporal monitoring of such a plasma together with relativistic atomic and non-LTE kinetic codes create a very useful and productive environment for the study of atomic and plasma spectroscopy features and development of their applications. A variety of examples of K-shell low-Z (such as Mg and Al), L-shell mid-Z (such as Ni, Cu, and Ag), and M- and L-shell high-Z (W) will be considered and their specific features and applications to fusion and astrophysics will be highlighted.

The author acknowledges contributions of V.L. Kantsyrev, U.I. Safronova, M.E. Weller, G.C. Osborne, V.V. Shlyaptseva (all from UNR). The research was supported by DOE/NNSA under CA DE-FC52-06NA27588 and in part by DE-FG02-08ER54951.