Comparison of positron and electron binding to molecules1 J.R. DANIELSON, A.C.L. JONES, M.R. NATISIN, C.M. SURKO, University of California, San Diego — Positrons can attach to molecules via Feshbach resonances in which a vibrational mode absorbs the excess energy. Using a high-resolution positron beam, this process has been used to measure positron-molecule binding energies for many chemical species.2,3 In particular, recent measurements have focused on molecules with large permanent dipole moments (i.e., $\mu > 2.5$ D), including aldehydes, ketones, and nitriles. Positron binding to these molecules is compared to the analogous weakly bound electron-molecule (negative-ion) states, commonly called “dipole-bound” states.4 Positron binding energies are found to be one to two orders of magnitude larger than those of the negative ions due to two effects: the orientation of the molecular dipole moment allows the positron to approach it more closely; and for positrons, lepton correlations (e.g., via dipole polarizability) contribute more strongly. Comparisons to available calculations will be presented, as will comparisons to binding to molecules with $\mu \sim 0$ (e.g., polarizability bound states).

1Work supported by NSF grant PHY 10-68023.