Excitation energies, radiative and autoionization rates, dielectronic satellite lines, and dielectronic recombination rates for excited states of Yb-like W1 P. BEIERSDORFER, Lawrence Livermore National Laboratory, U.I. SAFRONOVA, A.S. SAFRONOVA, University of Nevada, Reno — Energy levels, radiative transition probabilities, and autoionization rates for [Cd]4f145p66l''nl, [Cd]4f145p66l''nl, [Cd]4f145p55d2nl, [Cd]4f145p55d2nl, and [Cd]4f135p55d2nl (l'' = s, p, d, f, g, n = 5 – 7) states of Yb-like tungsten (W4+) are calculated using the RMBPT, HULLAC, and COWAN codes. Branching ratios relative to the [Cd]4f145p66s, [Cd]4f145p66s, and [Cd]4f145p66s thresholds in Tm-like tungsten and intensity factors are calculated for satellite lines, and dielectronic recombination (DR) rate coefficients are determined for the singly excited, as well as non-autoionizing core-excited states in Yb-like tungsten. Contributions from the autoionizing doubly excited states and core-excited states (with n up to 100), which are particularly important for calculating total DR rates, are estimated. Synthetic dielectronic satellite spectra from Yb-like W are simulated in a broad spectral range from 200 to 1400 Å. These calculations provide recommended values critically evaluated for their accuracy for a number of W4+ properties useful for a variety of applications including for fusion applications.

1This research was sponsored by DOE under the OFES grant DE-FG02-08ER54951 and in part under the NNSA CA DE-FC52-06NA27588. Work at the LLNL was performed under auspices of the DOE under contract DE-AC5207NA2344.

Ulyana Safronova
University of Nevada, Reno

Date submitted: 25 Jan 2012