Abstract Submitted for the DAMOP12 Meeting of The American Physical Society

Hyperfine Structure in the ⁸⁷Rb₂ 1_g State Below $5^2S + 5^2P_{1/2}$ T. BERGEMAN, SUNY Stony Brook, E. TIESINGA, P.S. JULIENNE, NIST, C.-C. TSAI, National ChengKung U., Taiwan, D. HEINZEN, U. Texas, Austin — Hyperfine structure in the Rb₂ 1_gP_{1/2} state was observed in photoassociation from cold atoms some time ago, but only partially analyzed. Our Hamiltonian includes the vibrational energy, G(v), rotational energy, B(v), hyperfine interaction, $A(v)\iota$, and off-diagonal elements $F_{\pm} \cdot I_{mp}$. F ranges from 1 to 6, ι from -I to I, where I=3. The data scans were precisely calibrated by simultaneously etalon scans. For the 22 vibrational levels (over a range of 50) for which there is precise data, A(v) varies from 2.97×10^{-2} cm⁻¹ to 3.15×10^{-2} cm⁻¹. The G(v) and B(v) values allow us to construct a potential down to 32 cm⁻¹ below the dissociation limit.

> T, Bergeman SUNY Stony Brook

Date submitted: 26 Jan 2012

Electronic form version 1.4