Abstract Submitted
for the DAMOP12 Meeting of
The American Physical Society

Fragmentation dynamics of Ar_2^+ dimers in intense laser fields1 M. MAGRAKVELIDZE, Department of Physics, Kansas State University, J. WU, R. DÖRNER, Institut für Kernphysik, Goethe Universität, U. THUMM, Department of Physics, Kansas State University — We studied the fragmentation dynamics of the Ar_2 dimers in 790 nm pump and 1400 nm probe pulses with intensities of 10^{14} W/cm2 by analyzing kinetic energy release (KER) spectra as a function of the pump probe delay. The KER spectra are measured by detecting Ar-ion fragments in a COLTRIMS [1] setup and are compared with model calculations based on the numerical propagations of the time-dependent Schrödinger equation [2]. The measured spectra are best reproduced by two-state calculations that include the adiabatic electronic states $I(1/2)_u$ and $II(1/2)_g$ of Ar_2^+, dipole coupled in the pump- and probe-laser electric fields.

1Supported by the US DOE and NSF.

Maia Magrakvelidze
Department of Physics, Kansas State University

Date submitted: 26 Jan 2012

Electronic form version 1.4