Probing many-body physics with an optical lattice clock

MICHAEL BISHOF, MICHAEL J. MARTIN, MATTHEW D. SWALLOWS, CRAIG BENKO, JAVIER VON STECHER, JILA, NIST, and University of Colorado at Boulder, ALEXEY V. GORSHKOV, Institute for Quantum Information, California Institute of Technology, ANA MARIA REY, JUN YE, JILA, NIST, and University of Colorado at Boulder — Advances in ultra-stable lasers now permit sub-Hz resolution of optical atomic transitions. At this level, interactions can dominate dynamics of the interrogated atoms, even for ultracold spin-polarized fermions. Density dependent frequency shifts of the 1S_0 to 3P_0 clock transition were first observed in 87Sr [1]. Originally, this effect was attributed to s-wave interactions enabled by inhomogeneous excitations [2,3]. More recently, evidence for p-wave interactions was reported in 171Yb [4]. Understanding interactions in these systems is necessary to improve clock accuracy and stability. Moreover, such an understanding will enable optical lattice clock systems to serve as quantum simulators for open, driven, strongly-interacting quantum systems at the mesoscopic scale. We present a comprehensive evaluation and understanding of the interactions present in a 87Sr optical lattice clock system under various conditions using a mean-field theory. The regime in which only a genuine many-body treatment can properly describe our system is within immediate experimental reach.