Temperature Dependence of Rb 5P Fine-Structure Transfer Induced by 4He Collisions

M.A. GEARBA, University of Southern Mississippi, J.F. SELL, B.M. PATTERSON, R. LLOYD, J. PLYLER, R.J. KNIZE, US Air Force Academy — Employing ultrafast laser excitation and time-correlated single-photon counting, we have measured the fine-structure transfer between Rb 5P states induced by collisions with 4He buffer gas at temperatures up to 150°C. The temperature dependence of the binary cross-section agrees with earlier measurements while having almost an order of magnitude smaller uncertainty. Our data show that the temperature dependence of the three-body rate is about the same as that of the binary rate. The three-body rate can be described as arising from the reduction of the rubidium fine-structure splitting due to nearby helium atoms. Our fine-structure transfer studies are relevant for understanding alkali-inert gas atomic interactions as well as for practical applications in alkali laser development.

1This work has been supported by the Air Force Office of Scientific Research and the National Science Foundation.