Abstract Submitted for the DAMOP12 Meeting of The American Physical Society

Molecule-molecule hyperfine Feshbach resonances ALISDAIR WALLIS, ROMAN KREMS, University of British Columbia — Magnetic Feshbach scattering resonances play a central role in experimental research of atomic gases at ultracold temperatures. A major thrust of current research is to create an ultracold gas of diatomic alkali-metal molecules in the ground rovibrational state of the ground electronic ${}^{1}\Sigma$ state. Can ultracold ${}^{1}\Sigma$ molecules be controlled by means of magnetic Feshbach resonances? Unlike alkali metal atoms, ${}^{1}\Sigma$ diatomic molecules have no unpaired electrons. The response of ${}^{1}\Sigma$ molecules to an external magnetic field is determined entirely by the spin structure of the atomic nuclei. We present the first calculations of molecule-molecule collisions for ${}^{1}\Sigma$ molecules in a magnetic field. In particular, we calculate the rates of hyperfine relaxation in molecule - molecule collisions and explore the possibility of tuning magnetic Feshbach resonances in an ultracold gas of ${}^{87}\text{Rb}{}^{133}\text{Cs}(X^{1}\Sigma^{+})$ molecules.

> Alisdair Wallis University of British Columbia

Date submitted: 26 Jan 2012

Electronic form version 1.4