Adiabatic loading and cooling of SU(N) alkaline earth atoms in optical lattices

SALVATORE R. MANMANA, JILA / University of Colorado at Boulder, LARS BONNES, Institute for theoretical physics, University of Innsbruck, Austria, KADEN R.A. HAZZARD, JILA / University of Colorado at Boulder, STEFAN WESSEL, Institute for theoretical solid state physics, RWTH Aachen University, Germany, ANA MARIA REY, JILA / University of Colorado at Boulder — We present thermodynamic properties of SU(N) alkaline earth atoms adiabatically loaded onto optical lattices. In particular, we compute the final temperatures obtained by such a procedure and identify an enhanced cooling effect when increasing N. The combination of high temperature series expansion and extensive numerical calculations (Quantum Monte Carlo and DMRG) allows us to characterize this effect over a wide range of initial temperatures and to identify the temperature regime in which the physics is governed by SU(N) superexchange interactions. We discuss implications for ongoing experiments.

Salvatore R. Manmana
JILA / University of Colorado at Boulder

Date submitted: 27 Jan 2012

Electronic form version 1.4