Exploring the high-order harmonic generation from Rydberg states with a fixed Keldysh parameter1 ERDI ATA BLEDA, ILHAN YAVUZ, ZIKRI ALTUN, Marmara University, TURKER TOPCU, Auburn University — The commonly adopted viewpoint that the Keldysh parameter γ determines the dynamical regime of ionization in strong field physics has long been demonstrated to be a misleading one. One can then ask what happens in strong field ionization as relevant parameters, such as laser intensity and frequency, are varied while keeping γ fixed. We present results from our simulations of high-order harmonic generation (HHG) from Rydberg states of a hydrogen atom. We calculate high harmonic spectra from various initial states with n up to 42, where the laser intensities and the frequencies are scaled from those for $n = 1$ in order to maintain a fixed Keldysh parameter $\gamma < 1$. We find that as we go up in n for a fixed γ, the position of the cut-off scales as $\sim 1/n^2$ in terms of the cut-off law predicted by the three-step model for $n = 1$. However, a secondary cut-off structure forms below this, which moves to lower harmonics as n is increased. This second cut-off splits the plateau into two regions, one higher in yield and below the second cut-off, and the second with lower yield following it. We further investigate the final n-distributions for some of the interesting cases to elucidate the physical mechanism leading to this structure

1IY and ZA was supported by BAPKO of Marmara University. TT was supported by the Office of Basic Energy Sciences, US Department of Energy.

Turker Topcu
Auburn University

Date submitted: 27 Jan 2012

Electronic form version 1.4