Single- and Multiple-Electron Removal Processes in Proton-Water Vapor Collisions

MITSUKO MURAKAMI, TOM KIRCHNER, MARKO HORBATSCH, Department of Physics and Astronomy, York University, Toronto ON M3J 1P3, Canada, HANS JÜRGEN LÜTDE, Institut fuer Theoretische Physik, Goethe-Universitaet, D-60438 Frankfurt, Germany — Charge-state correlated cross sections for single- and multiple-electron removal processes due to capture and ionization in proton-H₂O collisions are calculated by using the non-perturbative basis generator method adapted for ion-molecule collisions [1]. Orbital-specific cross sections for vacancy production are evaluated using this method to predict the yields of charged fragments (H₂O⁺, OH⁺, H⁺, O⁺) according to branching ratios known to be valid at high impact energies. At intermediate and low energies, we obtain fragmentation results on the basis of predicted multi-electron removal cross sections, and explain most of the available experimental data [2]. The cross sections for charge transfer and for ionization are also compared with recent multi-center classical-trajectory Monte Carlo calculations [3] for impact energies from 20keV to several MeV.


This work has been supported by NSERC Canada and SHARCNET.