Abstract Submitted for the DAMOP12 Meeting of The American Physical Society

Quantum Mixtures of Ultracold Lithium and Ytterbium Atoms¹ ALEXANDER KHRAMOV, ANDERS HANSEN, WILLIAM DOWD, ALAN JAMISON, BEN PLOTKIN-SWING, BEN SCHWYN, SUBHADEEP GUPTA, University of Washington — Quantum mixtures of alkali and spin-singlet atoms offer new opportunities for studying few- and many-body physics, and also represent a starting point for producing paramagnetic polar molecules, of interest in various applications including quantum simulation and precision measurement. We report on studies of manipulating quantum mixtures of lithium (alkali) and ytterbium (spin-singlet) atoms by external magnetic fields. In one study, we achieve differential spatial control of the two atomic species by applying a magnetic gradient. Using this technique we are able to place bosonic ¹⁷⁴Yb inside a deeply Fermi degenerate ⁶Li cloud as an interspecies probe. This gradient technique will also alleviate the relative gravitational sag for LiYb molecule formation work. In a separate study, we investigate the effect of 174 Yb on Li₂ dimer formation and stability near the broad ⁶Li Feshbach resonance. The collisional stability of the Li-Yb mixture is adequate to allow time-resolved studies of these effects. We find evidence of modified Li₂ formation rate as well Li₂-Yb interactions. We will also report on studies of the Fermi-Fermi ¹⁷³Yb-⁶Li system and outline prospects for future work.

¹Supported by the National Science Foundation and Sloan Foundation.

Alexander Khramov University of Washington

Date submitted: 30 Jan 2012

Electronic form version 1.4